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The recently derived Lagrangian-averaged Navier—Stokes equations model the large-scale flow of
the Navier—Stokes fluid at spatial scales larger than sopréori fixed >0, while coarse-graining

the behavior of the small scales. In this communication, we numerically study the behavior of the
two-dimensional(2D) isotropic version of this model, also known as themodel. The inviscid
dynamics of this model exactly coincide with the vortex blob algorithm for a certain choice of
smoothing kernel, as well as the equations of an inviscid second-grade non-Newtonian fluid. While
previous studies of this system in 3D have noted the suppression of nonlinear interaction between
modes smaller thar, we show that the modification of the nonlinear advection term also acts to
enhance the inverse-cascade of energy in 2D turbulence and thereby affects scales of motion larger
than « as well. This, we note(@ may preclude atraightforwarduse of the model as a subgrid
model in coarsely resolved 2D computatioft®,is reminiscent of the drag-reduction that occurs in

a turbulent flow when a dilute polymer is added, &gdcan be qualitatively understood in terms of
known dimensional arguments. @001 American Institute of Physic$DOI: 10.1063/1.1359764

The two-dimensional2D) incompressible, Euler equa- whose mass is mostly supported in a disc of diameter

tions are Thus, instead of using the integral keri€lx,y), one uses
the smoother kerndd “= V- G* whereG* is the solution of

G+ V- (Uw)=0, V-u=0, «(t=0)=wy, @ —AG“=y. The vortex-blob method then evolves the point-
wherew=V Xu is the vorticity,u is the spatial velocity vec- vortex initial data, which we shall now cally, by the ordi-
tor field, t denotes time, and all the dependent variables denary differential equation
pend ont and Xx=(X4,X,), the Cartesian coordinates in the N
plane. An inversion of the vorticity-velocity relation yields di
u=JK(x,y)(y) dy, whereK=V*G, G is the solution of dt
—AG=4, and V*=(—d,,,dy, ). For fluid motion over the
entire planeK(x,y)=(27) 1V*log|x—y|. Let % denote
the flow ofu,=u(t,-), so thatd 5, /dt=u,(7(t)). Becausey,
is divergence-free, the flow mag, is an area-preserving
transformation for each It follows that

- f K (0, 7 (y))oly) dy. 3

Henceforth, to keep the notation concise, we will drop the
superscriptz when there is no ambiguity.

When the vortex-bloby is the modified Bessel function
of the second kinkK, it is the fundamental solution of the
operator (£ @A) in the plane, and the vorticity is related

dn, to the smoothed velocity vector fields by q=(1
H:f K (ap(x), m(y)) o (m(y)) dy —a?A)VXu. Thus, Chorin’s vortex method for this choice

of smoothing is given by the partial differential equation

=f K (p(X), m(y))wo(y) dy, @) 2q+V-(uq)=0, V-u=0, q(t=0)=q,. (4

where the last equality is a consequence of the pointwise The system of equation@}) is also known as the 2D
conservation of vorticity along Lagrangian trajectories,isotropic averaged Euler equations, and are derived by aver-
w(7:(X))=we(X). Thus, the initial vorticity field completely aging over Lagrangian fluctuations of ordeabout the mac-
determines the fluid motion. Choosing the initial vorticity to roscopic flow field®=® When the constant>0 is interpreted
be a sum oN point vorticess; positioned at the points; in as a material parameter which measures the elastic response
the plane with circulation$’; woinN:lFiéi, Eq.(2) pro- of the fluid due to polymerization instead of as a spatial
duces the classical point-vortex approximation(ip. This  length scale, thef¥) are also exactly the equations that gov-
approximation is known to be highly unstable, as finite-timeern the inviscid flow of a second-grade non-Newtonian
collapse of vortex centers may occur. fluid.® According to Noll's theory of simple materialg}) are
Chorin’s vortex blob methddalleviates the instability of obtained from the unique constitutive law that satisfies ma-
the point-vortex scheme by smoothing each delta funcfion terial frame-indifference and observer objectivity. Conse-
with a vortex bloby, a function that decays at infinity, and quently, the vortex method with the Bessel functign
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smoothing naturally inherits these characteristiérther-  of fluid dynamics, we will now consider forced-dissipative
more, for any initial condition and fixed time interval, one simulations of the systen¥) to demonstrate the effect of
may choose the number of modeg,, large enough so as to such an inviscid modification. If we use a vorticity-stream
be arbitrarily close to the exact solution of the averaged Eufunction formulation, the evolution of both the Euler and
ler equations without the addition of viscosity. For such largeaveraged Euler systems can be represented by
Kmax,» @nd in simulations of unforced decaying turbulence,

. L Jw
the averaged Euler equations exhibit a fundamental feature —— 4 (1 42A) =1y, (1— a?A)w]=F+D, (5)
of 2D turbulence: a sharp decrease in enstraplyring the at

first few large eddy turnover times. This is extremely inter'wherew=A¢// Jis the Jacobiarf; is the forcing, and is the
esting, because, while it is necessary to add viscosity to thSissipation.(The Euler system corresponds &6=0) Our
Euler equations to obtain similar behavior, the averaged EYsmerical scheme consists of a fully dealiased pseudospec-
ler e_quatlons can reproduce this behavior while exac_tly_co_nfra| spatial discretization and(@ominally) fifth-order, adap-
sgrvmg_ an e_nergy. We shall_report further on such '”V'Sc'dtive timestep, embedded Runge—Kutta Cash—Karp temporal
simulations in future publications. _ discretization of(5) (see Ref. 9 for details With such a

We find the connections between averaging Euler €qUascheme, among the infinity of inviscidFE D=0) con-
tions over Lagrangian fluctuations, a constitutive theory forggpeq quantities fof5), the only two conservation proper-

polymeric fluids, and a classical numerical algorithm to bejjag that survive are those for the kinetic enefy: and
quite intriguing and suspect that these equations will be im-

> , "enstrophyZy2 given, respectively, by
portant from a modeling standpoint. However, most previous
studies of the averaged Euler equations have been of a math- 1 2. 2 5 a2

ematical nature, and we are aware of only a few cases where Bri= Ef (Jul*+ & Vul) dx(=lul),

this syste;n has been used agdgnamig modeling tool: L (6)
Chenet al” used a viscous version of the 3D averaged Euler Zp0= Ef [(1—a?A)w]2 dx(= IIwIIaz).

equations to simulate isotropic turbulence and found that
they could reproduce large-scale features without fully re- o .
In the forced-dissipative runs to be considered, the forc-

solving the flow. Nadighconsidered the inviscid 2D form of , . : . .
the averaged Euler equations and demonstrated that for sulf9 F iS achieved by keeping the amplitudes of modes with

ably chosen values af, the large-scalepectral-scalingof ~ Wave numbers in the small wave number band<k0
the Euler equations could be preserved while achieving 5~ 10.001 constant in time. The dissipatid, is a combina-

faster spectral decay at the smaller scales. Finally, NadigEiOn of a fourth-order hyperviscous operator and a large-scale

P LM — o 4 i -
and Margoli® used an extension of the 2D averaged Eulef!ction term: D=35y—(—vA)"w, as has been used in nu

equations in a geophysical context to model the effects of1€rous previous studies of 2D turbulence. The form and
mesoscale eddies on mean flow. value of the forcing and dissipation are held exactly the same

Before we go on to consider numerical simulation of thefor all the runs to be presented, irrespective of the resolution

Lagrangian-averaged Euler system, we wish to point out tha@"d the value ot. _
there is also a beautiful geometric structure(# which On the one hand, it could be argued that since the energy

follows the framework developed by Arndfdand Ebin and @nd enstrophy that are conserved an unforced-inviscid
Marsden'? While the details of this particular issue are far set_tmg_are EH_l and Z_HZ’ respectively, it is their _dynamlcs
outside the scope of this article, it is, nevertheless, worthWhich is of primary Importance. Qn the pther, it could _be
while to state the result. Arnold showed that the appropriat@dued thatin the context ¢), the interest in small scales is

configuration space for a perfect incompressible fluid is the?MlY in S0 much as it affects the larger scales and to that
group of all area-preserving diffeomorphisms of the fluid extenta has no primary significance and that it is really the

container, and that solutions of the Euler equations are ged@'9€-scale components of energy and enstrophi)rthat
desics on this group with respect to a certain kinetic energ{® Of Primary interest. While both these points of view are
metric, characterized by the inner-prodii€ti- v) dx for two reasonable, in this brief commuplcatlon, we p'roceed with the
divergence-free vector fields andv. The system(4) also Ia_1tter_ and concern ourselves with the dy_namlcs of the usual
has this geometric property, but now the metric is instead“net'C energy and usual enstrophy as given by
characterized by [(u-v+2a?Def(u) - Def(v)) dx, where 1 1
Def(u) is the rate of deformation tens¢¥W u+ (Vu)T)/2.13 E= if [u2dx, ZzZ= EJ w? dx. (7)
Equations(4) thus preserve the Hamiltonian structure of the
Euler equations. In particular, vorticity remains pointwise Figure 1 shows the evolution of the kinetic energy
conserved by the smooth Lagrangian floyf so that with time for four different values ok,. For these compu-
q(77(x))=0qo(x), the vorticity momentafgPdx are con- tations, 512 physical grid points were used in each direction,
served, and so the Kelvin circulation theorem remains ifitactresulting in, after accounting for dealiasing, a maximum, cir-
as well. cularly symmetric wave numbek,,,,, of 170.(Wave num-
Since in each of the three different scenarios—berk, corresponding to a wavelengthwas defined as2\,
Lagrangian-averaged Euler, vortex-blob method, and invisso that &k, of unity corresponded to the length of the box
cid second-grade fluid—the essential modification of theof 27r.) The four runs correspond tk, of « (dissipative
original equations is a change of the advective nonlinearityEulen, 42, 21, and 14. This figure shows that for identical
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L T T inertial ranges of 2D dissipative Euler equatidfisa
i PN S . A Kolmogorov-like cascade picture fo4) shows that the iner-
N 5 PR AN - " A ’ . .
A ' Y VN e AT tial range consists of two subranges, the enstrophy cascade
PR M TNV S subrange where there is a down-scale cascade o¥ the
: ~ v v M Vi~ . .
& 1o ! I,’ Nad VAN Y J:’ Nt enstrophy defined iri6), and the energy cascade subrange
% AN N A NI A T N S A where there is an up-scale cascade ofEhe energy defined
5 FE B : . .
& Ha ] in (6). E41 andZ,2 are the relevant energy and enstrophies
§ ,, ; Qi ] since these are the ones which are conserved in an inviscid
= < 3 o T et e . e R
2 sl Pl S B &,.7-:;'ks;f«;‘y\r;f"*;;;-i,w\./\\\-;ﬂ‘-»;e.’sr,g-.cz.h-;;;;;x;@ . and unforced case. _
i) = oo If we assume that the wave numbey only appears in
: = = . . .
i g . the Helmholtz operator, as it does in the governing equa-
1 a0 tions, then we have the following.
|5 N (i) Inth troph de sub
ol -~ 7" L ‘ I i) In the enstrophy cascade subrange,
0 5 10 15 20 a
Time (Eddy turnover times) E(k) — ﬁszb, (8)

FIG. 1. The evolution of kinetic enerdy with time for k, =% (solid line), where B,z is the rate of dissipation df,2 enstrophy, ané
k, =42 (dotted ling, k, =21 (dashed ling andk, =14 (dotted-dashed life  anqp are exponents to be determined by dimensional analy-
An increase ine, for identical forcing and dissipation, results in an overall _. e . .

sis. IfL andT are characteristic length and time scales in the

reduced viscous behavior. In the inset is shown the evolution of enst@phy i . .
for the same time interval and for the same four values @ind with the ~ enstrophy cascade subrange, the dimensions of the various

same line types as for kinetic energy. While there is a significant differencq;luantities in(8) imply
between zero and nonzesocases, the dependence on the actual value of
L3T*2:T*3a(1+ aZL*Z)ZaL*b,

itself is rather weak.
from which a=3. However, even in the enstrophy cascade
) o o ) subrange, the value df depends on the the rati@/L. For
forcing and dissipation, the tendency with increasiag ,<| of course b=—3. and the classic{l E(k)~k 23 is
(equivalently decreasink,) is to achieve an overall balance |gocovered: whenwsL E(k)~k~173 Finally, when « is

which makes the flow less viscous. - comparable td., it is easy to see th&(k) decays faster than
While the kinetic energy of the runs with differeat 5, Euler but slower thak 173 (as may be seen in Fig).2
shows a definite tren@increasing with increasing), such is (i) In the energy cascade subrange

not the case with the enstrophy shown for the same four
cases in the inset of Fig. 1. Here interestingly, all the runs  E(K)~ €}:K", 9
with nonzerow se_em_to display approximatel_y t_he same IeVelwhereeHl is the rate of dissipation df1 energy, andh and
of enstrophy which is lower than far=0. This indicates b are exponents to be determined by dimensional analysis. If
(i) that the small-scale behavior is quite different whenL andT are characteristic length and time scales, now, in the
a=0 and whena is nonzero(as noted in previous energy cascade subrange, the dimensions of the various
studied®9), but that this difference is not sensitively quantities in(9) imply
dependent on the value ef for the interesting range L3T2=T-33(1+ o2L2)3L 28",
of values ofe, and
(i)  that the more significant change withis the behavior
of the large scales.

from which a=3$. Again, even in the energy cascade sub-
range, the value ob depends on the the ratie/L. For «
<L, of courseb=—5/3, and the classicdIE(k)~k >3 is

Therefore, to further examine the nature of thisrecovered; whem>L, E(k)~k 3. Whena is comparable
(reduced-viscoysbehavior of the large scales, we examineto L, it is easy to see that the inverse cascade of energy is
the energy-wave-number spectra in Fig. 2. Here, the averagsnhanced, that isz(k) increases with decreasirlg faster
of the one-dimensional energy spectriitk) between times  thank =52 (Eulen but slower thark 3. While the effects of
5 and 20 is plotted against the scalar wave nunkb&igure  the enhancement of the inverse cascade of energy is clear in
2 shows that the reduced-viscous behavior for increasiisy  Fig. 2, we defer the verification of the asymptotic values of
achieved by systematically increasing the energy in modethe exponenb to later studies when we can afford much
larger in scale than the forcing scale and decreasing the etarger simulations with a good dynamic range in each of the
ergy in modes smaller in scale compared to the forcing scalénertial subranges.

The larger energy content in the larger scales implies an  The steeper falloff of the energy spectrum witln the
enhancement of the inverse cascade of energy of 2D turbwenstrophy cascade range of wave numbers whefl, com-
lence by the nonlinear-dispersive modification of the advecpared to Euler, may, at first, suggest that a coarser resolution
tive nonlinearity whena>0 in (5). So also, the decreased may be sufficient to resolve the flow when>0 (for the
energy content in the smaller scales is attributable to theame forcing and dissipatinrHowever, this is not the case,
same nonlinear-dispersive modification. In the following, weas should be clear from Fig. 3. In this figure, the spectra of
give a simple dimensional argument to explain the observethe cases previously discussed is replotted together with the
behavior. For this, consider the governing equations in theorresponding spectra when the resolution is reduced by a
form (4). In close analogy with the classical picture for the quarter k,.=128) and a half ,,,,=85). (The spectra for
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dently in at least two other contexts—second grade poly-
meric fluids and vortex blob methods. In this Brief
Communication, we make two observations that are likely to
be of fundamental importance in understanding the relevance
of these models in describing more realistic flows: While it
has been previously noted that with these equations, nonlin-
ear interactions at scales small compared &re suppressed,
we have shown here that the modification of the nonlinear
advection term in these equations also leads to an enhance-
ment of the inverse cascade of energy in two dimensions—a
characteristic feature of 2D turbulence. This in turn implies
(1) an overall reduced-viscous behavior g2l a significant
modification of the dynamics of scales larger thanboth
- — : ' reminiscent of the phenomenon of drag reduction in a turbu-
K lent flow when a dilute polymer is adddd.g., see Ref. 15
FIG. 2. Stationary wave-number-energy spedtiag-log scale for the and references therginFurthermore, we point out that the

forced-dissipative simulations of the averaged Euler equations with zero aniMiting of the energy spectrum at small scales due oes
nonzeroa. k= (solid line), k,=42 (dotted ling, k,=21 (dashed ling not, in itself, allow the(2D) flow to be resolved on a coarser

and k,= 14 (dotted-dashed line The inset shows the same plot with a grid and, therefore, precludes a straightforward use of the

linear-linear scale for the first ten wave numbers. The enhanced inverse- : ;
cascade of energy and the suppressed energy level at smaller scales W{ -r_nOdeI asa SUbgnd model in Coarsely resolved 2D compu-

increasinga is evident. ations.
The latter notwithstanding, we remark that the averaged

Euler equations are useful in better understanding the limit of
the different values ot are offset to improve clarity.The  inviscid fluid flow, since the averaged Euler equations with
degree of nonresolution of the flow due to the reduced resoyiscosity, unlike the Euler equations, converge regularly to
lution is indicated by the deviation of that spectrum from thatthe solutions of the inviscid systetiThat is, for an arbitrary
for the fully resolved case. With a 25% reduction in resolu-pyt fixed time interval, we can chooaesmall enough so that
tion, the flows are almost resolved for all valuesagfwhile  the solution of the averaged Euler equations are uniformly
with a 50% reduction, the flows are not fully resolved any-within anya priori chosen error of the Euler equatidrand

more. Importantly, the degree of nonresolution is indepenthen consider the zero viscosity limit of the viscous, aver-
dent of « to the lowest order. aged Euler equations.
Besides their use in describing mean motion, tha-
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